A Class of Sums with Unexpectedly High Cancellation

Hamed Mousavi (joint work with Ernie Croot)

Georgia Institute of Technology HMOUSAVI6@GATECH.EDU

Combinatorial and Additive Number Theory
CUNY Graduate Center (via Zoom)

June 3, 2020

Pentagonal Number Theorem

Let $p(n)$ be the number of partitions of n and $G_{\ell}=\frac{\ell(3 \ell-1)}{2}$ be ℓ-th pentagonal number. Then

$$
\sum_{G_{\ell} \leq n}(-1)^{\ell} p\left(n-G_{\ell}\right)=0 .
$$

Proof in for example Professor Berndt's "Number Theory in Spirit of Ramanujan" Book.

Rademacher expression for $p(n)$

Let $\mu_{k}(n)=\frac{\pi \sqrt{24 n-1}}{6 k}$. Rademacher-Ramanujan-Hardy proved that
$p(n)=\frac{\sqrt{12}}{24 x-1}\left(\sum_{k=1}^{\infty} A_{k}(n)\left(\left(1-\frac{1}{\mu_{k}(n)}\right) e^{\mu_{k}(n)}+\left(1+\frac{1}{\mu_{k}(n)}\right) e^{-\mu_{k}(n)}\right)\right)$
where

$$
A_{k}(n)=\sum_{\substack{0 \leq h<k \\(h, k)=1}} \omega_{h, k} e^{\frac{2 \pi i h n}{k}}
$$

Proof in for example Professor Andrew's "Theory of partitions" book. Approximate version

$$
p(n) \simeq \frac{e^{\pi \sqrt{\frac{2 n}{3}}}}{4 \sqrt{3} n}
$$

Approximation of number of partitions

The first two terms:

$$
p_{2}(x)=\frac{\sqrt{12} e^{\frac{\pi}{6} \sqrt{24 x-1}}}{24 x-1}\left(1-\frac{6}{\pi(24 x-1)^{\frac{1}{2}}}\right)+O\left(p(x)^{0.5}\right) .
$$

Figure: Comparison of the error term of first two terms with actual number for $20<n<2000$.

Conclusion

What will happen if we use $p_{2}(n)$ in pentagonal number theorem?

$$
\sum_{G_{0}<n}(-1)^{\ell} p_{2}\left(n-G_{\ell}\right)=O\left(p(n)^{0.5}\right)
$$

Beginning of a long story!

Conclusion

What will happen if we use $p_{2}(n)$ in pentagonal number theorem?

$$
\sum_{G_{\ell} \leq n}(-1)^{\ell} p_{2}\left(n-G_{\ell}\right)=O\left(p(n)^{0.5}\right)
$$

Beginning of a long story!

Observation

Lets test something simpler! We proved that

$$
\sum_{l^{2} \leq n}(-1)^{\prime} e^{\sqrt{n-l^{2}}}=O\left(e^{\frac{\sqrt{0}}{100}}\right) .
$$

There is something deeper than a combinatorial property.

Conclusion

What will happen if we use $p_{2}(n)$ in pentagonal number theorem?

$$
\sum_{G_{\ell} \leq n}(-1)^{\ell} p_{2}\left(n-G_{\ell}\right)=O\left(p(n)^{0.5}\right) .
$$

Beginning of a long story!

Observation

Lets test something simpler!

$$
\sum_{\ell^{2} \leq n}(-1)^{\ell} e^{\sqrt{n-\ell^{2}}}=O\left(n^{10}\right)
$$

Our estimated error term is very small!

Theorem

Let $b, d \in \mathbb{R}, a, c>0$; Also, let $h(x)$ be $(\alpha x+\beta)^{t}$ for $\alpha, \beta, t \in \mathbb{R}$. Then

$$
\begin{equation*}
\sum_{n: a n^{2}+b n+d<x}(-1)^{n} e^{c \sqrt{x-\left(a n^{2}+b n+d\right)}} h\left(x-\left(a n^{2}+b n+d\right)\right) \ll \sqrt{x} e^{w c \sqrt{x}} \tag{1}
\end{equation*}
$$

where $w>0$ is defined as follows. Set

$$
\Delta(r):=\sqrt{\sqrt{a} r \frac{\sqrt{a r^{2}+4}+r \sqrt{a}}{2}}-\frac{\pi r}{c} \quad, \quad r \geq 0
$$

If $r=\alpha$ is when $\Delta(r)$ is maximized, then $w=\min (1, \Delta(\alpha))$.

A heuristic argument

Consider Bernoulli random variables $\epsilon_{n}= \pm 1$ with probability $P\left(\epsilon_{n}=1\right)=0.5$. Then what is expectation of

$$
\begin{aligned}
& E\left(\sum_{\ell^{2}<n} \epsilon_{\ell} e^{\sqrt{n-\ell^{2}}}\right)=0 \\
& \operatorname{Var}\left(\sum_{\ell^{2}<n} \epsilon_{\ell} e^{\sqrt{n-\ell^{2}}}\right) \gg e^{2 \sqrt{n}} .
\end{aligned}
$$

Then why this sum is that small?

First Natural try

Understanding using Taylor expansions:

$$
\sum_{r=0}^{\infty} \frac{S_{r}(M)}{r!}:=\sum_{r=0}^{\infty} \sum_{\ell^{2} \leq 4 M^{2}}(-1)^{\ell} \frac{\left(4 M^{2}-\ell^{2}\right)^{\frac{r}{2}}}{r!}=O\left(e^{\frac{2 M}{50}}\right)
$$

We expect that $\operatorname{deg}\left(S_{r}(M)\right)=2 r$.

First Natural try

Understanding using Taylor expansions:

$$
\sum_{r=0}^{\infty} \frac{S_{r}(M)}{r!}:=\sum_{r=0}^{\infty} \sum_{\ell^{2} \leq 4 M^{2}}(-1)^{\ell} \frac{\left(4 M^{2}-\ell^{2}\right)^{\frac{r}{2}}}{r!}=O\left(e^{\frac{2 M}{50}}\right)
$$

We expect that $\operatorname{deg}\left(S_{r}(M)\right)=2 r$.

Reality

We proved that actually $\operatorname{deg}\left(S_{r}(M)\right)=r-1$.

$$
\begin{aligned}
& S_{4}(M)=16 M^{3}-17 M \\
& S_{6}(M)=-408 M^{5}-480 M^{3}-2073 M .
\end{aligned}
$$

This might be doable by using the known result about Bernoulli numbers. We did not attempt to prove it this way; we predict that this way can prove this polynomial case in the best case scenario.

Remark

These sums are similar to Kloosterman's sum, I call them sisters! Our interested series:

$$
\sum_{\ell^{2} \leq n}(-1)^{\ell} e^{\sqrt{n-\ell^{2}}}
$$

Kloosterman's sum:

$$
\sum_{\substack{0 \leq \ell<n \\ \operatorname{gcd}(n, \ell)=1}} e^{2 \pi i \ell^{-1}\left(a-\ell^{2}\right)}
$$

We prove a weaker result about their father:

$$
\sum_{\ell^{2}<T_{x}}(-1)^{\ell} e^{(\alpha+i \beta) \sqrt{x-\frac{\ell^{2}}{T}}}=O\left(\sqrt{\frac{T x}{|\beta|+1}} e^{\alpha\left(\sqrt{\frac{2}{2+\pi^{2}}}+\delta\right) \sqrt{x}}+\sqrt{T}\right)
$$

Theorem

Assume $\epsilon>0, x$ is large enough and $a=1-\sqrt{\frac{2}{2+\pi^{2}}}$. We have

Remarks

In particular for $T=e^{0.786 \sqrt{x}}$:

$$
\sum_{0<2 \ell<\sqrt{x T}} \Psi\left(\left[e^{\sqrt{x-\frac{(2 \ell)^{2}}{T}}}, e^{\sqrt{x-\frac{(2 \ell-1)^{2}}{T}}}\right]\right)=\Psi\left(e^{\sqrt{x}}\right)\left(\frac{1}{2}+O\left(e^{-0.196 \sqrt{x}}\right)\right),
$$

This says we have half of primes in $\cup\left[e^{\sqrt{x-\frac{(22)^{2}}{T}}}, e^{\sqrt{x-\frac{(22-1)^{2}}{T}}}\right]$. If we use RH naively, we cannot make the error term this small. So controlling the father can be really rewarding!!!

General case

In general if we consider a "Meinardus type" partition as

$$
\lambda(n) \sim(g(n))^{q} e^{(k(n))^{\theta}}\left(1-\frac{1}{(h(n))^{r}}\right)+O\left(\lambda(n)^{s}\right)
$$

where $0<s<1$ and $\theta, r, q>0$ and $k(n)$ is a linear polynomial and $g(n), h(n)$ are rational functions. Then

$$
\sum_{t(\ell)<n}(-1)^{\ell} \lambda(n-t(\ell))=O\left(\lambda^{\kappa}(n)\right)
$$

where $\kappa>s$ is determined from the analytic properties of the partition.

Application in Partitions

We proved that for the usual partitions

$$
\sum_{\ell^{2}<x}(-1)^{\ell} p\left(x-\ell^{2}\right) \sim 2^{-3 / 4} x^{-1 / 4} \sqrt{p(x)}
$$

and for the partitions with distinct parts

$$
\sum_{\ell^{2} \leq n}(-1)^{\ell} q\left(n-\ell^{2}\right)=O(\sqrt[3]{q(n)})
$$

Application to Prouhet-Tarry-Escott problem

The problem asks for biggest possible $k<n$ such that there exists two disjoint sets $\left\{y_{i}\right\}$ and $\left\{x_{j}\right\}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =y_{1}+y_{2}+\cdots+y_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2} \\
\cdots & \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} & =y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}
\end{aligned}
$$

There has been a huge interest in this problem, see for example the survey paper by S Raghavendran.

Application to Prouhet-Tarry-Escott problem

The problem asks for biggest possible $k<n$ such that there exists two disjoint sets $\left\{y_{i}\right\}$ and $\left\{x_{j}\right\}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =y_{1}+y_{2}+\cdots+y_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2} \\
\cdots & \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} & =y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}
\end{aligned}
$$

There has been a huge interest in this problem, see for example the survey paper by S Raghavendran.
For the constructive solution, the best we know is $k \ll \log ^{2}(n)$.

Application to Prouhet-Tarry-Escott problem

The problem asks for biggest possible $k<n$ such that there exists two disjoint sets $\left\{y_{i}\right\}$ and $\left\{x_{j}\right\}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =y_{1}+y_{2}+\cdots+y_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2} \\
\cdots & \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} & =y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}
\end{aligned}
$$

There has been a huge interest in this problem, see for example the survey paper by S Raghavendran.
For the constructive solution, the best we know is $k \ll \log ^{2}(n)$.
For the ideal solution - $k=n-1$ - the best we know is $n=12$.

Application to Prouhet-Tarry-Escott problem

The problem asks for biggest possible $k<n$ such that there exists two disjoint sets $\left\{y_{i}\right\}$ and $\left\{x_{j}\right\}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =y_{1}+y_{2}+\cdots+y_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2} \\
\cdots & \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} & =y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}
\end{aligned}
$$

There has been a huge interest in this problem, see for example the survey paper by S Raghavendran.
For the constructive solution, the best we know is $k \ll \log ^{2}(n)$.
For the ideal solution - $k=n-1$ - the best we know is $n=12$.
For the non-constructive solution, the best we know is $k=O(\sqrt{n})$ using a certain Peigen-hole argument.

Application to Prouhet-Tarry-Escott problem

The problem asks for biggest possible $k<n$ such that there exists two disjoint sets $\left\{y_{i}\right\}$ and $\left\{x_{j}\right\}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =y_{1}+y_{2}+\cdots+y_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2} \\
\cdots & \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} & =y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}
\end{aligned}
$$

There has been a huge interest in this problem, see for example the survey paper by S Raghavendran.
For the constructive solution, the best we know is $k \ll \log ^{2}(n)$.
For the ideal solution - $k=n-1$ - the best we know is $n=12$.
For the non-constructive solution, the best we know is $k=O(\sqrt{n})$ using a certain Peigen-hole argument.
We can suggest a solution to an "approximate" version of PTE problem.

Theorem

Let $n \geq 1$ and define $N=\left\lfloor(2 n)^{\frac{2}{3}}\right\rfloor$. Let for $1 \leq i \leq n$

$$
x_{i}=N^{3}-(2 i-2)^{2} \in \mathbb{N} \quad y_{i}=N^{3}-(2 i-1)^{2} \in \mathbb{N} .
$$

Then for all $1 \leq r \ll k:=\frac{n^{\frac{2}{3}}}{\log (n)}$ we have

$$
\begin{equation*}
\sum_{1 \leq i \leq n} x_{i}^{r}-\sum_{1 \leq i \leq n} y_{i}^{r}=O\left(\left(\max \left(x_{i}, y_{i}\right)\right)^{\frac{5 r}{6}}\right)=O\left(N^{\frac{5 r}{2}}\right) . \tag{2}
\end{equation*}
$$

Theorem

Let $n \geq 1$ and define $N=\left\lfloor(2 n)^{\frac{2}{3}}\right\rfloor$. Let for $1 \leq i \leq n$

$$
x_{i}=N^{3}-(2 i-2)^{2} \in \mathbb{N} \quad y_{i}=N^{3}-(2 i-1)^{2} \in \mathbb{N} .
$$

Then for all $1 \leq r \ll k:=\frac{n^{\frac{2}{3}}}{\log (n)}$ we have

$$
\begin{equation*}
\sum_{1 \leq i \leq n} x_{i}^{r}-\sum_{1 \leq i \leq n} y_{i}^{r}=O\left(\left(\max \left(x_{i}, y_{i}\right)\right)^{\frac{5 r}{6}}\right)=O\left(N^{\frac{5 r}{2}}\right) \tag{2}
\end{equation*}
$$

So modulo error $O\left(\left(\max \left(x_{i}, y_{i}\right)\right)^{\frac{55}{6}}\right)$ we have $k \gg n^{\frac{2}{3}+\epsilon}$.

Proof using circle method

We just talk about the case $\sum_{\ell^{2} \leq n}(-1)^{\ell} e^{\sqrt{n-\ell^{2}}}$. Let

$$
f(z)=\frac{e^{\sqrt{n-z^{2}}}}{\sin (\pi z)}
$$

and find $\int_{\gamma} f(z) d z$.
By the Residue Theorem the residue will be exactly the sum we are interested.

$$
\int_{\gamma} f(z) d z=\sum_{\ell^{2} \leq n}(-1)^{\ell} e^{\sqrt{n-\ell^{2}}}
$$

We need to compute the integral over contour.

Figure: Contour γ

Thank You

HMOUSAVI6@GATECH.EDU

