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Pentagonal Number Theorem

Let p(n) be the number of partitions and Gl = l(3l−1)
2 be l−th

pentagonal number. Then∑
Gl≤n

(−1)lp(n − Gl) = 0.

Sketch of proof (Professor Berndt’s ”Number Theory in Spirit
of Ramanujan” Book)

1 Elliptic discussion: Finding coefficients of (z ; q)∞ =
∑

n Bn(a, q)zn.

2 Solving recurrence formula Bn = f (a, q)Bn−1.

3 Literally taking a −→∞ and changing z properly.

4 Concluding (q; q)∞ =
∑∞

l=−∞(−1)lqGl .

5 Considering (q; q)−1∞ =
∑

n≥0 p(n)qn.
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Rademacher expression for p(n)

Let µk(n) = π
√
24n−1
6k . Rademacher-Ramanujan-Hardy proved that

p(n) =

√
12

24x − 1

( ∞∑
k=1

Ak(n)

(
(1− 1

µk(n)
)eµk (n) + (1 +

1

µk(n)
)e−µk (n)

))
.

where

Ak(n) =
∑

0≤h<k
(h,k)=1

ωh,ke
2πihn

k .

Proof in Professor Andrew’s ”Theory of partitions” book.

1 Cauchy integral formula

2 Farey dissections to avoid singularities

3 Modularity of Generating function

4 Circle Method
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Generalization ...
Define

p(x) =

√
12

24x − 1

( ∞∑
k=1

Ak(x)

(
(1− 1

µk(x)
)eµk (x) + (1 +

1

µk(x)
)e−µk (x)

))
.

where

Ak(x) =
∑

0≤h<k
(h,k)=1

ωh,ke
2πih[x]

k .
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Intuition
The first two terms:

p(x) =

√
12e

π
6

√
24x−1

24x − 1

(
1− 6

π(24x − 1)
3
2

)
+ O(p(x)0.5).

Figure: Comparison of the error term of first two terms with actual number for
20 < n < 2000.
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Figure: Relative error of the first two terms for 500 < x < 70000.
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Why generalization?

Let p1(x) be the first term of the Rademacher formula. Then∑
Gl<x

p1(x − Gl)(−1)l = O(p(x)0.72).

Figure: Error term in Pentagonal Number Theorem for 20 < n < 250
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Figure: Error term in Pentagonal Number Theorem for 500 < n < 70000
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Unexpected issue in natural proof!

The main difficulty is that we cannot use Cauchy integral formula. i. e.

p(x) 6=
∫
C

P(q)dq

qx+1

1 The output of integral is not equal to the Rademacher formula
numerically!

2 But they are comparable even for large numbers! Possibly for
Ak(x)?!

3 You cannot use Taylor series hoping to get an error better

than p(x)
polynomial .

4 Picking a proper function and a contour and use Residue Theorem.
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Figure: Relative error log(integral)−log(p(x))
log(p(x))

which should be around 0.5.
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Figure: Relative error of pentagonal number theory for first and second term
and the relative error of fisrt two terms.
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The most general form so far

Let r ∈ N, b, d ∈ R, c > 0, and let 0 ≤ w < 1 be defined as follows.

w = inf{0 < w ′ < 1 :
−cw ′rπ + c

√
r2π2 − c2 + c2w ′2

r2π2 − c2
<

w ′2√
1 + w ′2

}

(1)

Also, let ξr = e
πi
r and h(x) be a polynomial of 1√

x
with real coefficients.

Then

∑
n: n

2+bnr+dr2

r2
<x

ξnr
ec

√
x− n2+bnr+dr2

r2

h( n
r )

= O
(
ecw
√
x
)
. (2)
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What we may expect at first?

One can expect ∑
Gl<x

(−1)lp(x − Gl) = O(
p(x)

xa
).

for some a. Why? If xi = eyi . then

1 Let x1, x2, · · · , xn ∈ R. Let d1, d2, · · · , dn be ±1 with equal
probability.

2 Obviously E (d1x1 + d2x2 + · · ·+ dnxn) = 0.

3 Again obviously Var(d1x1 + d2x2 + · · ·+ dnxn) = x21 + · · ·+ x2n .

4 Standard argument suggests d1x1 + d2x2 + · · ·+ dnxn can be around√
x21 + · · ·+ x2n .

So we have a very high level (miraculous!) of cancellation here!
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The Conjecture

Comparing Ψ(e
π
6

√
24x−1) and p(x)

Let Ψ be Chebyshev function. Assuming Riemann Hypothesis and
Pentagonal number theorem:

∑
Gl<x

(−1)lΨ(e
π
6

√
24(x−Gl )−1)

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)

= O

(
e

0.72π
6

√
24x−1

√
24x − 1

)

Question: For the above formula, we used the estimation
Ψ(x) = x + θ(x

1
2+δ). What if we use the exact amount of Ψ?
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Figure: Error term of the theorem for Chebyshev Ψ function for 10 < n < 30
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Observation
This nice behaviour of Chebyshev functions means something deep is
going on here; which motivates us to assume the following hypothesis.

The conjecture: weak version

∑
Gl<x

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)
(−1)l

∑
n≤e

π
6

√
24(x−Gl )−1

Λ(n)

ns

= O

(
e
π( 1

2
−σ+δ)
6

√
24x−1

)
.

A dangerous intuition

Watching the error terms in partitions, we thought it remains really small
like O(1). But it started exploding to the expected error after x = 400.
So the same may happen for Ψ. Unfortunatly we do not have the
technology to check it.
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Theorem

Assuming the error term of pentagonal number theorem is p(x)0.5, then

1 For case Re(s) = 0, for δ > 0, and a.e. t

∑
Gl<x

(−1)l

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)

×
∑

n≤e
π
6

√
24(x−Gl )−1

Λ(n)

nit
= O

(
e
πδ
6

√
24x−1

)
.

2 For case Re(s) = 1
2 , for δ > 0, and a.e. t

∑
Gl<x

(−1)l

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)

×
∑

n≤e
π
6

√
24(x−Gl )−1

Λ(n)

n
1
2+it

= O

(
e
π( 1

4
+δ)

6

√
24x−1

)
.
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Figure: Error term of the right hand side of hypothesis for s = 0 and s = 1
2
.
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The Conjecture: strong version

Let ε > 0 and s = σ + it ∈ C. Then there exists a function f with finite
Fourier Transform such that

∑
Gl<x+ 1

24+ε

(−1)l

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)

×
∑

n≤e
π
6

√
24(x−Gl )−1

Λ(n)

ns
= O

(
f (x)e

π( 1
2
−σ)
6

√
24x−1

)
.
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Another Conjecture

Consider distribution of a random sequence {ρm} as follows∑
0<Im(ρm)<T

1 =
T

2π
log(

T

2π
)− T

2π
+ O(log(T )).

Then the function that minimize

∑
Gl<x

(−1)lω(e
π
6

√
24(x−Gl )−1)

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)

is chebyshev Ψ function. In particular

∑
Gl<x

(−1)lΨ(e
π
6

√
24(x−Gl )−1)

(
1

24(x − Gl)− 1
− 6

π(24(x − Gl)− 1)
3
2

)
= O(f (x)).
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Theorem

The strong version of the hypothesis for σ = 1
2 results in Riemann

hypothesis.
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Figure: RHS of strong Conjecture for 1 < n < 90 after one week of running
using parallel programming.
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Thank You

hmousavi6@gatech.edu

HAPPY BIRTHDAY PROFESSOR BERNDT
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Figure: Relative error of pentagonal number theory for first and second term
and the relative error of fisrt two terms with 50 digits.
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