Pentagonal Number Theorem and Riemann Hypothesis

Hamed Mousavi (joint work with Ernie Croot)

Georgia Institute of Technology HMOUSAVI6@GATECH.EDU

Analytic and Combinatorial Number Theory, The Legacy of Ramanujan In honor of Professor Berndt's 80th birthday
University of Illinois at Urbana Champaign, Urbana Champaign, Illinois

Outline

(1) Pentagonal Number Theorem
(2) The Conjecture
(3) The Conjecture vs Riemann Hypothesis

Pentagonal Number Theorem

Let $p(n)$ be the number of partitions and $G_{I}=\frac{I(3 I-1)}{2}$ be I-th pentagonal number. Then

$$
\sum_{G_{l} \leq n}(-1)^{\prime} p\left(n-G_{l}\right)=0
$$

Sketch of proof (Professor Berndt's "Number Theory in Spirit of Ramanujan" Book)

(1) Elliptic discussion: Finding coefficients of $(z ; q)_{\infty}=\sum_{n} B_{n}(a, q) z^{n}$.
(2) Solving recurrence formula $B_{n}=f(a, q) B_{n-1}$.
(3) Literally taking $a \longrightarrow \infty$ and changing z properly.
(- Concluding $(q ; q)_{\infty}=\sum_{l=-\infty}^{\infty}(-1)^{\prime} q^{G_{l}}$.
(c) Considering $(q ; q)_{\infty}^{-1}=\sum_{n \geq 0} p(n) q^{n}$.

Rademacher expression for $p(n)$

Let $\mu_{k}(n)=\frac{\pi \sqrt{24 n-1}}{6 k}$. Rademacher-Ramanujan-Hardy proved that
$p(n)=\frac{\sqrt{12}}{24 x-1}\left(\sum_{k=1}^{\infty} A_{k}(n)\left(\left(1-\frac{1}{\mu_{k}(n)}\right) e^{\mu_{k}(n)}+\left(1+\frac{1}{\mu_{k}(n)}\right) e^{-\mu_{k}(n)}\right)\right)$
where

$$
A_{k}(n)=\sum_{\substack{0 \leq h<k \\(h, k)=1}} \omega_{h, k} e^{\frac{2 \pi i h n}{k}}
$$

Proof in Professor Andrew's "Theory of partitions" book.
(1) Cauchy integral formula
(3) Farey dissections to avoid singularities
(3) Modularity of Generating function
(0) Circle Method

Generalization ...

Define
$p(x)=\frac{\sqrt{12}}{24 x-1}\left(\sum_{k=1}^{\infty} A_{k}(x)\left(\left(1-\frac{1}{\mu_{k}(x)}\right) e^{\mu_{k}(x)}+\left(1+\frac{1}{\mu_{k}(x)}\right) e^{-\mu_{k}(x)}\right)\right)$
where

$$
A_{k}(x)=\sum_{\substack{0 \leq h<k \\(h, k)=1}} \omega_{h, k} e^{\frac{2 \pi i h[x]}{k}} .
$$

Intuition

The first two terms:

$$
p(x)=\frac{\sqrt{12} e^{\frac{\pi}{6} \sqrt{24 x-1}}}{24 x-1}\left(1-\frac{6}{\pi(24 x-1)^{\frac{3}{2}}}\right)+O\left(p(x)^{0.5}\right) .
$$

Figure: Comparison of the error term of first two terms with actual number for $20<n<2000$.

Figure: Relative error of the first two terms for $500<x<70000$.

Why generalization?

Let $p_{1}(x)$ be the first term of the Rademacher formula. Then

$$
\sum_{G_{l}<x} p_{1}\left(x-G_{l}\right)(-1)^{\prime}=O\left(p(x)^{0.72}\right) .
$$

Figure: Error term in Pentagonal Number Theorem for $20<\underline{\underline{n}}<250$

Figure: Error term in Pentagonal Number Theorem for $500<n<70000$

Unexpected issue in natural proof!

The main difficulty is that we cannot use Cauchy integral formula. i. e.

$$
p(x) \neq \int_{C} \frac{P(q) d q}{q^{x+1}}
$$

(1) The output of integral is not equal to the Rademacher formula numerically!
(2) But they are comparable even for large numbers! Possibly for $A_{k}(x)$?!
(3) You cannot use Taylor series hoping to get an error better than $\frac{p(x)}{\text { polynomial }}$.
(1) Picking a proper function and a contour and use Residue Theorem.

Figure: Relative error $\frac{\log (\text { integral })-\log (p(x))}{\log (p(x))}$ which should be around 0.5 .

Figure: Relative error of pentagonal number theory for first and second term and the relative error of fist two terms.

The most general form so far

Let $r \in \mathbb{N}, b, d \in \mathbb{R}, c>0$, and let $0 \leq w<1$ be defined as follows.

$$
\begin{equation*}
w=\inf \left\{0<w^{\prime}<1: \frac{-c w^{\prime} r \pi+c \sqrt{r^{2} \pi^{2}-c^{2}+c^{2} w^{\prime 2}}}{r^{2} \pi^{2}-c^{2}}<\frac{w^{\prime 2}}{\sqrt{1+w^{\prime 2}}}\right\} \tag{1}
\end{equation*}
$$

Also, let $\xi_{r}=e^{\frac{\pi i}{r}}$ and $h(x)$ be a polynomial of $\frac{1}{\sqrt{x}}$ with real coefficients. Then

$$
\begin{equation*}
\sum_{n: \frac{n^{2}+b a r+d r^{2}}{r^{2}}<x} \xi_{r}^{n} \frac{e^{c \sqrt{x-\frac{n^{2}+b a r+d r^{2}}{r^{2}}}}}{h\left(\frac{n}{r}\right)}=O\left(e^{c w \sqrt{x}}\right) . \tag{2}
\end{equation*}
$$

What we may expect at first?

One can expect

$$
\sum_{G_{l}<x}(-1)^{\prime} p\left(x-G_{l}\right)=O\left(\frac{p(x)}{x^{a}}\right)
$$

for some a. Why? If $x_{i}=e^{y_{i}}$. then
(1) Let $x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{R}$. Let $d_{1}, d_{2}, \cdots, d_{n}$ be ± 1 with equal probability.
(2) Obviously $E\left(d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{n} x_{n}\right)=0$.
(3) Again obviously $\operatorname{Var}\left(d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{n} x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$.
(0) Standard argument suggests $d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{n} x_{n}$ can be around $\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.
So we have a very high level (miraculous!) of cancellation here!

Outline

(1) Pentagonal Number Theorem

(2) The Conjecture

(3) The Conjecture vs Riemann Hypothesis

Comparing $\Psi\left(e^{\frac{\pi}{6} \sqrt{24 x-1}}\right)$ and $p(x)$

Let Ψ be Chebyshev function. Assuming Riemann Hypothesis and Pentagonal number theorem:

$$
\begin{aligned}
\sum_{G_{l}<x}(-1)^{\prime} \Psi\left(e^{\frac{\pi}{6} \sqrt{24\left(x-G_{l}\right)-1}}\right) & \left(\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right) \\
& =O\left(\frac{e^{\frac{0.72 \pi}{6} \sqrt{24 x-1}}}{\sqrt{24 x-1}}\right)
\end{aligned}
$$

Question: For the above formula, we used the estimation $\Psi(x)=x+\theta\left(x^{\frac{1}{2}+\delta}\right)$. What if we use the exact amount of Ψ ?

Figure: Error term of the theorem for Chebyshev Ψ function for $10<n<30$

Observation

This nice behaviour of Chebyshev functions means something deep is going on here; which motivates us to assume the following hypothesis.

The conjecture: weak version

$$
\begin{aligned}
\sum_{G_{l}<x}\left(\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right) & (-1)^{\prime} \sum_{n \leq e^{\frac{\pi}{6} \sqrt{24\left(x-G_{l}\right)-1}}} \frac{\Lambda(n)}{n^{5}} \\
& =O\left(e^{\frac{\pi\left(\frac{1}{2}-\sigma+\delta\right)}{6} \sqrt{24 x-1}}\right) .
\end{aligned}
$$

A dangerous intuition

Watching the error terms in partitions, we thought it remains really small like $O(1)$. But it started exploding to the expected error after $x=400$. So the same may happen for Ψ. Unfortunatly we do not have the technology to check it.

Theorem

Assuming the error term of pentagonal number theorem is $p(x)^{0.5}$, then
(1) For case $\operatorname{Re}(s)=0$, for $\delta>0$, and a.e. t

$$
\begin{aligned}
\sum_{G_{l}<x}(-1)^{\prime}\left(\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right) \\
\times \sum_{n \leq e^{\frac{\pi}{6} \sqrt{24\left(x-G_{l}\right)-1}}} \frac{\Lambda(n)}{n^{i t}}=O\left(e^{\frac{\pi \delta}{6} \sqrt{24 x-1}}\right) .
\end{aligned}
$$

(2) For case $\operatorname{Re}(s)=\frac{1}{2}$, for $\delta>0$, and a.e. t

$$
\begin{gathered}
\sum_{G_{l}<x}(-1)^{\prime}\left(\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right) \\
\quad \times \sum_{n \leq e^{\frac{\pi}{6}} \sqrt{24\left(x-G_{l}\right)-1}} \frac{\Lambda(n)}{n^{\frac{1}{2}+i t}}=O\left(e^{\frac{\pi\left(\frac{1}{4}+\delta\right)}{6} \sqrt{24 x-1}}\right)
\end{gathered}
$$

Figure: Error term of the right hand side of hypothesis for $s=0$ and $s=\frac{1}{2}$.

The Conjecture: strong version

Let $\epsilon>0$ and $s=\sigma+i t \in \mathbb{C}$. Then there exists a function f with finite Fourier Transform such that

$$
\begin{aligned}
\sum_{G_{l}<x+\frac{1}{24}+\epsilon}(-1)^{\prime}(& \left.\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right) \\
& \times \sum_{n \leq e^{\frac{\pi}{6}} \sqrt{24\left(x-G_{l}\right)-1}} \frac{\Lambda(n)}{n^{5}}=O\left(f(x) e^{\frac{\pi\left(\frac{1}{2}-\sigma\right)}{6}} \sqrt{24 x-1}\right) .
\end{aligned}
$$

Another Conjecture

Consider distribution of a random sequence $\left\{\rho_{m}\right\}$ as follows

$$
\sum_{0<\operatorname{lm}\left(\rho_{m}\right)<T} 1=\frac{T}{2 \pi} \log \left(\frac{T}{2 \pi}\right)-\frac{T}{2 \pi}+O(\log (T)) .
$$

Then the function that minimize

$$
\sum_{G_{l}<x}(-1)^{\prime} \omega\left(e^{\frac{\pi}{6} \sqrt{24\left(x-G_{l}\right)-1}}\right)\left(\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right)
$$

is chebyshev ψ function. In particular

$$
\begin{aligned}
\sum_{G_{l}<x}(-1)^{\prime} \Psi\left(e^{\frac{\pi}{6} \sqrt{24\left(x-G_{l}\right)-1}}\right) & \left(\frac{1}{24\left(x-G_{l}\right)-1}-\frac{6}{\pi\left(24\left(x-G_{l}\right)-1\right)^{\frac{3}{2}}}\right) \\
& =O(f(x)) .
\end{aligned}
$$

Outline

(1) Pentagonal Number Theorem

(2) The Conjecture
(3) The Conjecture vs Riemann Hypothesis

Theorem
The strong version of the hypothesis for $\sigma=\frac{1}{2}$ results in Riemann hypothesis.

Figure: RHS of strong Conjecture for $1<n<90$ after one week of running using parallel programming.

Thank You

HMOUSAVI6@GATECH.EDU

HAPPY BIRTHDAY PROFESSOR BERNDT

Figure: Relative error of pentagonal number theory for first and second term and the relative error of fist two terms with 50 digits.

