Three Circles Theorem and Moments of Riemann Zeta functions

Hamed Mousavi

Ph.D. Student, School of Mathematics Georgia Institute of Technology

Complex Analysis Project, Georgia Tech, Atlanta, Georgia

May 3, 2019

Outline

1 Three Circles Theorem and its Proof

2 Moments of Riemann Zeta functions

Basic Facts

① A function $f:[a,b] \longrightarrow \mathbb{R}$ is convex, iff for any points x_1, \dots, x_n in [a,b] and real numbers $t_1, \dots, t_n \ge 0$ with $\sum t_i = 1$

$$f(\sum t_i x_i) \leq \sum t_i f(x_i).$$

- ② A set $A \subseteq \mathbb{C}$ is convex iff for any points z_1, \dots, z_n in A and real numbers $t_1, \dots, t_n \ge 0$ with $\sum t_i = 1$, we conclude that $\sum t_i z_i \in A$.
- **3** A differentiable function $f:[a,b] \longrightarrow \mathbb{C}$ is convex iff f' is increasing.

Definition

- A function f is log-convex iff $\log(f(x))$ is convex. So exp is log-convex, but x^2 is not. If f is convex and g is log-convex, then $g \circ f$ is log-convex.
- ② A sequence $\{a_n\}$ is log-convex iff $a_n^2 a_{n-1}a_{n+1} \le 0$. Partition sequence p(n) is log-concave. If a_n, b_n are log-concave, then a_nb_n is log-concave.

Lemma

Let $G = \{z = x + iy | a < x < b\}$ and $f : \overline{G} \longrightarrow \mathbb{C}$ be analytic in G and continuous for $z \in \partial G$ we have $|f(z)| \leq 1$. Then $z \in G$ we have $|f(z)| \leq 1$.

Proof

- **1** Step one: Let $g_{\epsilon}(z) = \frac{1}{1 \epsilon(z a)}$. Then $g_{\epsilon}(z) \leq 1$.
- ② Step two: One can see that $|f(z)g_{\epsilon}(z)| < \frac{B}{\epsilon_{Y}}$ for a constant B.
- **3** Step three: If $y>\frac{B}{\epsilon}$, use Step two to say |f(z)|<1. If $y<\frac{B}{\epsilon}$, use Maximum Modulus Theorem to say |f(z)|<1.

First Version of Three Circles Theorem

Let $G = \{z = x + iy | a < x < b\}$ and $f : \overline{G} \longrightarrow \mathbb{C}$ be analytic and continuous in ∂G . Also $M : [a, b] \longrightarrow \mathbb{R}$ is defined

$$M(x) = \sup\{|f(x+iy)|, -\infty < y < \infty\}$$

If |f(z)| < B, then M(x) is log-convex. i.e. for a < x < u < y < b

$$M(u)^{y-x} \leq M(x)^{y-u}M(y)^{u-x}.$$

Proof

- Step one: $M(a), M(b) \neq 0$.
- 2 Step two: Let $g(z) = M(a)^{\frac{b-z}{b-a}} M(b)^{\frac{z-a}{b-a}}$ is entire and never vanishes.
- **3** Step three: |g(z)| is continuous w.r.t x and never vanishes. So $\frac{f}{g}$ is bounded.
- Step four: g(a+iy)=M(a) and g(b+iy)=M(b). So $|\frac{f}{g}|\leq 1$ in $z\in\partial G$.
- **3** Step five: Use the Lemma to say $\left|\frac{f}{\sigma}\right| \leq 1$ for $z \in G$.

Three Circles Theorem and its Proof

Corollary

Let $G = \{x + iy | a < x < b\}$ and $f : \overline{G} \longrightarrow \mathbb{C}$ be non constant and continuous. Then for $z \in G$ we have $|f(z)| < \sup\{|f(w)| : w \in \partial G\}$.

Remark

Unlike Maximum Modulus Theorem G is not bounded. Also, f need not to be analytic.

Second Version of three circles Theorem

Let $0 < R_1 < R_2 < \infty$ and suppose that f is analytic on annus $(0,R_1,R_2)$. If $R_1 < r < R_2$, define $M(r) = \max\{|f(re^{i\theta})| : 0 < \theta < 2\pi\}$. Then for $R_1 < r_1 \le r \le r_2 < R_2$

$$\log(M(r)) \le \frac{\log(r_2) - \log(r)}{\log(r_2) - \log(r_1)} \log(M(r_1)) + \frac{\log(r) - \log(r_1)}{\log(r_2) - \log(r_1)} \log(M(r_2)). \tag{1}$$

Outline

1 Three Circles Theorem and its Proof

2 Moments of Riemann Zeta functions

Ultimate goal

We want to find a bound for

$$I_k(T,\sigma) := \int_1^T |\zeta(\sigma+it)|^{2k} dt$$

where

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad Re(s) > 1$$

It is known that $I_k(T) \sim C_k T \log^{k^2}(T)$. We do not know C_k for k > 10. But there is a conjecture for all n.

We aim for $I_k(T) << (>>) T \log^{k^2}(T)$. The good news is we can bound this function for specific values of σ .

The reference Theorem

Let f be regular in infinite strip $\alpha < Re(z) < \beta$ and continuous in boundary. Let $f(z) \longrightarrow 0$ as $|Im(z)| \longrightarrow \infty$ uniformly for $\alpha \le Re(z) \le \beta$. Then for q > 0 and $\alpha \le \gamma \le \beta$ we have

$$\int_{-\infty}^{\infty} |f(\gamma+it)|^q dt \leq \left(\int_{-\infty}^{\infty} |f(\alpha+it)|^q dt\right)^{\frac{\beta-\gamma}{\beta-\alpha}} \left(\int_{-\infty}^{\infty} |f(\beta+it)|^q dt\right)^{\frac{\gamma-\alpha}{\beta-\alpha}}$$

The so called application

Let $w(t) = \int_T^{2T} e^{-2k(t-\tau)^2} d\tau$ and $J(\sigma) = \int_{-\infty}^{\infty} |\zeta(\sigma+it)|^{2k} w(t) dt$. Then

We have the lower bound

$$J(\frac{1}{2}) << T^{k(\sigma-\frac{1}{2})}J(\sigma) + e^{-\frac{kT^2}{3}}.$$

2 and the upper bound

$$J(\sigma) << T^{\sigma-\frac{1}{2}}J(\frac{1}{2})^{\frac{3}{2}-\sigma} + e^{-\frac{kT^2}{4}}.$$

Sketch of proof

- Let $f(z) = (z)e^{(z-i\tau)^2}$, and we get three circles $Re(z) = \sigma, \frac{1}{2}, 1 \sigma$.
- ② If Im(z) becomes far from τ , then we have no contribution.
- **1** If not, we use three circles Theorem and functional equation $\zeta(s) = \zeta(1-s)G(s)$ for some controllable G.
- So the contribution of the inner and outer circle is w.r.t $Re(z) = \sigma$ and the middle one has $Re(z) = \frac{1}{2}$.

References

Conway, John B. Functions of one complex variable II. Vol. 159. Springer Science, Business Media, 2012.

Heath-Brown, D. R. "Fractional Moments of the Riemann Zeta-Function." Journal of the London Mathematical Society2.1 (1981): 65-78.

References

Thank You

HMOUSAVI6@GATECH.EDU